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" O P T I C A L  T U R B U L E N C E "  
P R O B L E M S  

I N  L A S E R  R A D I A T I O N  

I. B. K r a s n y u k  UDC 517.9 

A new version of  describing the process (~[ excitation of  quasistochastic self-oscillations in a system of  

the "reaction-diffusion" type with nonlinear boundary conditions is presented. 

In this work it is shown that the properties of boundary surfaces exert a substantial influence on the 
radiation-density distributions and in some cases lead to the appearance of "optical turbulence" [ 1]. We present 
below a modified version of the mathematical results reported in [2-4] and their application to boundary-value 

problems of nonlinear optics [5]. 
Formula t ion  of  the Problem. For radiation transfer equations, the following parabolic approximation 

can be obtained [6, 7]: 

1 OJo. ~Jl~. ~2Jlx ! O.l~x 0.]~ 
- - - - +  = ~ Z 1 - - + F l  (']l~) , - - 
v I Ot ~x Ox 2 v 2 0 t  Ox 

- -  = Z2 0x---5- + F2 ('I2~.) • 
(1) 

To solve system (1), we consider the classical initial-boundary-value problem in the domain I3 --- {x, t: 

0 < x <  1, t >  0} with the boundary conditions 

aJ;x aJ;z 
0x - % (.llx, J2x)I . ,~ ,  ~x - 6i (Jlx,.12x)].,--i,  

where o~i and [3 i are prescribed nonlinear functions, i = I, 2, and with certain initial conditions: 

Ji (x, O)= hi (x) , 0 < x <  1 . 

It is known  ([6] ,  p. 290) that in a o n e - c o m p o n e n t  ac t ive  medium,  for  ins tance ,  for  the K o l m o -  

gorov-Petrovskii-Piskunov equation 

~u 32u 
" c - - =  D ---7 + f (u) 

ot bx- 

the only possible type of autowave processes is switching waves that occur in a nonlinear cavity; at the same 
time, tbr multicomponent active media, various autowave processes can take place, e.g., Turing structures, mas- 

ter centers [7], dynamic chaos, and so on. 
Below we restrict ourselves to an investigation of the solutions that have the form of running waves 

with arguments of  the form (x - (o)/k)t). Such processes can be said to have the phase velocity v = to/k. 
Reduction to a Difference Equation.  Stationary solutions of system (1) have the form 

" f f ( x , t ) = u ( ~ , t ) ;  " Y ( x , t ) = v ( q , t ) ;  c = l ,  
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Fig. 1. Phase  picture of  a f in i t e -d imens iona l  oscillator; a,  center-type 
point; C, separatrix dividing periodic and "drift" trajectories• 

where ~ = t - x  and q = t + x. Then Eqs. (1) are reduced to the system of  ordinary differential equations 

~ l u "  (t + x) + F 1 (u (t + x))  = O,  ~2 u" ( t  - x)  + F 2 (u (t - x ) )  = O.  

Note that any solution (u, v) = (~Pl, ~P2) satisfies the equations 

l . 2  

'¢i (si) + % (q~i (si))  = ci , 

where 

(2) 

(Pi 

Vi (~i) = I Fi (q)i) d~Pi ; 
0 

s i = (l 'k- ( - l ) i - lx) ;  c i are some constants: thus, each ci corresponds  to its "own" phase space (~Pi, ~Pi); here, one 
of the the level lines depicted in Fig. 1 will be an orbit, i = 1, 2. 

We determine 

~0 I ( s 0 = t  q ( s  0 ,  S l = X ,  O < x < l ;  

~ 2 ( S 2 ) = l t 2 ( S 2 ) ,  S 2 = - - X ,  -- l <_S 2 < 0 ,  

so that the family of  trajectories N.) that depend on x as a parameter  will correspond to the set of  initial func- 
tions (tq, h2) c Ii x12, where 11 and 12 are some open bounded  intervals: for instance, the family of  periodic 
solutions will correspond to the set rt c Ii x 12 inside the region bounded by the curve C [8]; more complicated 
situations are also possible [9]• 

Note that tbr the set 70(tq) c y(Cl) we obtain a single periodic trajectory (Fig. 1); hereafter it will be 
assumed that this requirement is always fulfilled and we call it condition (o0. Then the level line can be deter- 
mined uniquely: 

C i = h i" (0 )  + °ft i ( h  i ( 0 ) )  , i = 1, 2 ,  

and by virtue of  the aforesaid the following relations s tem f rom Eqs. (1): 

• ~ " ~ _ (3) ~ O l - ( t - l ) + W  l(~o l ( t - l ) ) = q ,  ~ P 2 ( t + l ) + h u , ( ~ o 2 ( t + l ) ) = c ~  

and 

. "~ • o 

~0~ (t) + ' e l  (~Pl (t)) = c~ ,  ~ (t) + ' t '  2 (~2 (t)) = c : .  (4) 
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Hence the existence of  l -periodic solutions in the variable t fol lows immediately for the Cauchy problem: 

q)i (t) ---- (Pi (t -- 1) , i = 1, 2 ; t ~ [ -  l, ~ ) .  

Next, the equalities 

0q)l _ 0('Pt 0q)2 ~q)2 (5) 
O{ O x '  Orl Ox 

are obvious, and therefore from (1)-(5) and the boundary conditions we can obtain the system of  tour func- 

tional equations 

O~1 ((Pl (t--  !) ,(P2 ( t +  1)) + ~I'J 1 (q)l ( l--  I ) ) = C  1 (1 ) ,  

~-(q)  l ( l--  l ) , (p2 ( t +  1))+~'*2 (q)2( l+ I))-----C 2 ( 1 ) ,  

and 

13 7 (% (t) ,  q~2 (t)) + q ' l  (% (t)) = q (0) ,  13~ (% ( t ) ,  % (t)) + q'2 (q)2 (t)) = c 2 (0).  

Note that tbr Cl(l) = Cl(0) it tbllows immediately that (after the shift t ~ t + l in the third equation and 
its subsequent comparison with the first equation) the fol lowing equality holds: ct~ = 131; if similarly c2(1) = 
c2(0), then g2 = 132 and we arrive at the system of equations 

c~ (% (t - 1), % (t + 1)) = q - q ' l  (% (t - i ) ) ,  

(6) 
ot~ (qh ( t -  1), tp 2 (t + i ) ) =  c 2 -  W 2 (cp 2 (t + 1)). 

Here, tbr instance, the following situations can take place: 1) for cl = c2, oq = or2, and ~l  = ~2 we have a 
family of  solutions (obviously, periodic ones) for the level line (Fig. 1); 2) the first o f  the equations of  system 
(6) is solvable (uniquely or nonuniquely) for any ~l ,  ~02 e 1 in such a way that 

% = YI.,, ( % ) ,  

and the second equation is solvable in such a way that 

~2 = Y2.c, (q)2) ' (PI' ~2 E 1, 

i.e., we obtain a family of  constant solutions. If there are several  such solutions (Fig. 2): tbr instance, both 

tp] and tp~ are unstable and tp~ ) is stable, then we have an example  of  classical switching waves [6]; thus, the 
situation W1 = q0t-  tP 3 considered in [7], p. 65 coincides with that described above for 

~1 (q~l) = Yl,,', (72,c~ (q:)l)) • 

Thus, condition (c0 implies the equality cj(0) = Cl(1). Note that this is the rather rigid requirement on 
the choice of  the initial functions 

" " )  ' ' 9  

h?  (0) "4- ~t/1 (tl I (0)) = h I (1) + ~l (hi (1)) 

at the comer  points, and henceforward,  to obtain more informative results, we will have to reject it (the con- 

dition) and deal with a fami ly  of  level lines yl(hl) and  y2(h2), respect ively,  so that the set y0(hl(X)) for 
O_<x_< 1 generates a "tube of  levels" (Fig. 2); here the lines C0 and Cl are boundary ones (here, we assume 
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Fig. 2. Family or "tube" of levels (a change in the "parameter" 0 < x  < I 
entails a change in the trajectories in the finite-dimensional phase space; 
all values of this parameter generate a family or "tube" of levels). 

Fig. 3. Illustration of the geometric application of  the method of charac- 
teristics. 

that the boundary conditions are fulfilled), and the phase space (k, (~, u, v) is the product (Fig. 2) of  two disks 
in R 2, on which, as will be shown below, we can construct a nonlinear representation of the shift along solu- 
tions of the initial boundary-value problem that is generated by nonlinear boundary conditions. 

Next, we assume that: 3) for any (qh, ~02) ~ I, where I is some open bounded interval such that (hi, 
h2) ~ 1, the system of equations (4) is solvable (uniquely or nonuniquely) in such a way that 

K01 (t+ 1 ) = ~  1 (~2 (t)), (7) 

and system (3) is solvable in such a way that 

~2( t+  l)=q~ 2 (~0~ ( t -  ! ) ) ,  (8) 

where ( I )  1 and ~2 are some functionals. 
We perform the argument shift t--4 t + 1 in functional equation (7) and use the value of qh from Eq. 

(8): 

q)l (t+ I ) = ~  1 (~2 (~01 ( t -  1))). (9) 

For solution of difference equation (9) with continuous time, we prescribe the tbllowing initial conditions [10]: 

h l(t) at O_<t_<l, (10) 
h ( t )=  _h2( t )  at - l _ < t < O ,  

which are obtained by extending the initial functions hi and t12 along the characteristics J:t = 1 and Jq = -1,  
respectively, to the boundary of the region {x = 1, t > O} with subsequent extension of the values of  the run- 
ning-wave amplitudes into the domain of definition of the solutions (Fig. 3). 

Thus, the initial boundary-value problem for stationary solutions of the running-wave type is reduced 
to difference equation (9) with initial conditions (10). The reduction method, from which, in particular, relation 
(10) stems, is considered in detail in [5, t0]; there, conditions on the functions Fi and ~i  and on the initial data 
hi, i = 1, 2, are given and a theorem on the asymptotic behavior of the solutions of problem (9)-(10) and hence 
the solutions of the initial boundary-value problem is formulated. 

For illustration, it is convenient to consider the classical boundary-value problem with the zero Neuman 
boundary conditions and functions of the tbrm 
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cPx'(¢0 

Fig. 4. Domain of existence of  bounded solutions. 

.fi (~,, ~2) = ~2 - bt~] (1 - ~1) and f2 (~,, ~2) = ~1 - ~2- 

Let us introduce characteristic t ime intervals and dimensionless variables.  Then tor the first equat ion 

we have 

and D = 
L L 2 

and likewise for the second equation. From [10] it follows that the limiting solution is a 2N/~'-periodic func- 

tion, where N is the least common multiple of  the periods of  the attracting cycles of  the mapping [10] 

which is generated by superposition of  the functions .[l and f2- 
Finally, taking account o f  diffusion leads to the representation [2] 

_Dj 
tq ---~ la ~--~2 u I (1 - u i ) ,  Di=Ki, 

where e o t =  DI/D> here e = xl/ ' t2 is a parameter determining the ratio of  the characteristic time intervals and 
= ~q/~c 2 is a parameter  determining the ratio of  the spatial scales ([6], p. 67). 

Without restricting the generality, we set ~ = 1 and ~¢ = D1/D2. Then from [10] it follows that for  
0 < ~¢ < 4 the function ~p~: u---) ~cu(l - u )  maps the interval I = [0, 1] into itself. For 0 < 1< _< I we obtain ~ +  = 
O, and tbr hi = h2 = 0 we have ul = u2 = 0; here [2] f2~ = {~l, ~ 2 > O ; f i  < 0 }  is the condition on the act ive 

medium of  the cavity. 
For 1 < ~: < 3 the solution component  ul monotonically approaches [~1, while for 2 < ~ < 3 it oscil lates 

relative to 9] (obviously, the same can be said of  the solution component  u2). 
Note that, here, the usual requirement of  the existence of  the small parameter  DI/D2 << 1 (see, e.g., 

[7]) tbr determination of self-oscillating regimes in the vicinity of  null isoclines leads to oscillating reg imes  
only fbr a "supernonlinear" active medium of the cavity, so that 1 < ~tDI/D 2 < 4; the nonlinearity pa ramete r  is 

~t > D2/D] >> 1. 
It is also pertinent to note that from the inclusion hi, h2 ~ ~+K the inclusion ul, u2 6 ff2+~ follows. This  

is a rather "fine" requirement on the choice of  the initial functions (Fig. 4). 
For 3 < 1< < 1 + "~- the region f2~ increases, and each solution with initial functions from ~ is a solu- 

tion of  the relaxation type that is asymptot ic  relative to some 4-periodic function. 
With increase in 1< to 1<* = 3.568 ... the periods of  the attracting cycles undergo successive doubling.  

For 1< > ~:* the limiting solution has an uncountable, nowhere dense set o f  mult ivaluedness points: in the termi-  
nology of  [10] these solutions can be both turbulent and strongly turbulent correspondingly. 
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The above scenario is in qualitative agreement with existing types of  self-similar solutions for systems 
with optical feedback ([6], p. 316). Such structures are often called nonlinear modes and only in this sense can 
we speak of "optical turbulence," since the actual turbulence must contain an infinite number of  modes, and 
each self-similar solution has its own region of attraction of the initial data. 

The instabilities considered that arise, for instance, when the amplitude of the incident radiation (or the 
parameter of the laser pumping) changes and lead to a sequence of  bifurcations of the corresponding limiting 
regimes represent, in essence, known lkeda instabilities (see, e.g., [6], p. 254), where the initial stationary re- 
gime becomes nonstationary and generates a regime with period 2, next with periods 4 . . . . .  2 N . . . . .  and so on, 
and at some }.t > p_* an autostochastic regime develops. The corresponding physical models can be found, for 
instance, in 16, 7]. 

For laser-radiation models, some estimates of the number of  photons in a nonlinear mode are made in 
[11]; thus, for instance, tbr a typical 2N-periodic regime of %c/L = 1 for % = 10 -l° sec, which corresponds to 
an Na laser [11], we obtain L = 10 -4 m. Then for comparatively short cavities with plane mirrors, where the 

Fresnel number is 

Fr = ao/XL >> 1 , 

where a0 is the transverse dimension of the light beam at ~, = m -l (here m = 1015 sec -l for an Na laser) we 
obtain the rough estimate 

2 
ao°) lOl,~ Fr - L - a 0 >> 1 , 

which shows that in this case, where the systems length L is much smaller than the characteristic length of 
diffraction smearing of the given beam aperture ao (Fr >> I), we can restrict ourselves to the approximation of 
geometrical optics. 

N O T A T I O N  

v;, phase velocities; ,Ilk, components of the radiation densities; D, diffusion coefficient in the Kolmo- 
gorov-Petrovskii-Piskunov (KPP) equation; m, frequency; k, wave number; ~,, wavelength; sc i, diffusion coeffi- 
cients in the radiation transfer equations; ix, index of the monochromatic-radiation wavelength; i, index of the 
number of components of the solution; ~i, 13i, functions reflecting the nonlinear interaction of the optical-me- 
dium boundary with the external medium: h, initial function; .L nonlinear source in the KPP equation; y(.), 
curve in the phase space; ', derivative; -, derivative; ci, some constants; g~.2, analytical representation of  func- 
tions and/or their superposition, some curves in the geometric context; ~i ,  functions in the difference equation; 
¢i, arguments of  the functions considered in the example; ~, parameter of  the function in the example; so, modi- 
fied physical parameter of the same function; *, index of the parameter at whose value quasistochastic oscilla- 
tions are possible; a0, transverse dimension of the light beam. 
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